วันพฤหัสบดีที่ 5 กันยายน พ.ศ. 2556

จำนวนเฉพาะ

จํานวนเฉพาะ




"จำนวนเฉพาะ" หรือ ไพรม์ นัมเบอร์ (Prime number) คือ จำนวนธรรมชาติที่มีตัวหารที่เป็นบวกอยู่ 2 ตัว คือ 1 กับตัวมันเอง เช่น 2, 3, 5, 7, 11, 13 และ 17 เป็นต้น และสำหรับเลข 1 นั้น ให้ตัดทิ้ง เพราะ 1 ไม่เป็นจำนวนเฉพาะ
จํานวนเฉพาะ 1-100 มีทั้งหมด 25 ตัว ดังนี้

          2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 และ 97
จํานวนเฉพาะ 1-200 มีทั้งหมด 46 ตัว ดังนี้
          2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 และ 199
จํานวนเฉพาะ 1-1000  มีทั้งหมด 176 ตัว ดังนี้
          2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 221, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 403, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 481, 487, 491, 499, 503, 509, 521, 523, 533, 541, 547, 559, 563, 569, 571, 577, 587, 593, 599, 601, 607, 611, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673,  677, 683, 689, 691, 701, 709, 719, 727, 733, 739, 743, 751, 767, 769, 773, 787, 793, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 871, 877, 881, 883, 887, 907, 911, 919, 923, 929, 937, 941, 947, 949, 953, 967, 971, 977, 983, 991 และ 997
          สำหรับวิธีตรวจสอบความเป็นจำนวนเฉพาะ สามารถทำได้ ดังนี้          สมมติเขาถามว่า 331 เป็นจำนวนเฉพาะรึเปล่า ทุกคนก็คงจะเริ่มด้วยการประมาณค่ารากที่สองของ 331 ซึ่งได้ประมาณเกือบ ๆ 18 จากนั้นก็เริ่มเอาจำนวนเฉพาะไปหาร 331 ดู โดยเริ่มจาก 2 3 5 7 ไปเรื่อย ๆ แต่พอเราลองไปจนถึง 17 แล้วยังไม่มีจำนวนเฉพาะสักตัวหาร 331 ลงตัว เราก็หยุดและสรุปว่า 331 เป็นจำนวนเฉพาะ โดยไม่ต้องลองเอาจำนวนเฉพาะอื่นๆ ไปหาร 331 อีกต่อไป  มีวิธีคิดดังนี้คือ ให้ n เป็นจำนวนนับใด ๆ (n เป็นจำนวนเฉพาะหรือไม่ก็เป็นจำนวนประกอบเพียงอย่างใดอย่างหนึ่ง)

              - สมมติว่า n เป็นจำนวนประกอบ

              - จำนวนประกอบคือจำนวนที่มีจำนวนอื่นนอกจาก 1 และตัวมันเองที่หารมันลงตัว

              - ดังนั้นมีจำนวนนับ a โดย a หาร n ลงตัว และ 1 < a < n

              - นั่นคือจะมีจำนวนนับ b ที่ 1 < b < n และ n = a * b

              - โดยไม่เสียนัยสำคัญกำหนดให้ a <= b (ถ้า a > b ก็ให้สลับค่า a กับ b)

              - สังเกตว่า a = รากที่สองของ (a^2) <= รากที่สองของ (a*b) = รากที่สองของ n
          


ไม่มีความคิดเห็น:

แสดงความคิดเห็น